AI Use Case
Predict and drive customer retention and churn management
Measure and better predict the characteristics of churners to allow for preventative retention actions. Identify most effecive retention actions by segment.
Function
Marketing
Customer Management
Benefits
Revenue - Customer retention,Revenue - Churn risk reduction
Case Studies
American Express~American Express Australia used machine learning to identify 24% of customer accounts that would close within four months allowing them to take preventative save actions ,T-Mobile~T-mobile reduces churn by up to 50% by identifying and retaining highly-influential 'tribe leader' customers with advanced predictive modelling,Neopost~Neopost identifies customers at risk of churn with machine learning using PredicSis,Equinix~Equinix predicts customer churn with 90% accuracy using a machine learning neural network model ,France Telecom ~France Telecom's Telekomunikacja Polksa realised that certain customers have a greater or lesser influences on networks of mobile phones users. If highly connected networkers churn then this is likely to cause a large ripple effect. To improve customer churn prediction and identification of who to retain they developed social graphs and analysis based on the transaction history and network connections of customers. This allowed them to improve prediction by 47%.,Paypal~PayPal improves customer churn and retention metrics with machine learning
Potential Vendors
Google,PredicSys,H2O.ai
Industry
Data Sets
Structured / Semi-structured
AI Technologies
Algorithm - Ensemble Learning,Machine Learning (ML)